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Abstract--An investigation is made of fluid flow and heat transfer characteristics in a vertically-mounted 
circular cylinder. Motions are generated by the top endwaU disk, which oscillates about the central axis 
with rotation rate ~ = e2 cos(2t). The temperature of the top disk is higher than that of the bottom disk, 
producing a stable stratification of Brunt-Vaisala frequency N. Numerical solutions are acquired to the 
time-dependent Navier-Stokes equations. Comprehensive velocity and temperature data are obtained, 
which illustrate salient features of quasi-steady periodic flows. As the stratification increases, the steady 
meridional streaming is confined to a narrow region close to the top disk. Resonance is identified at 
particular values of (N/X), when the system is excited at correct natural frequencies. An elementary inviscid 
analysis indicates the modes of inertial-gravity oscillations, and the present numerical data are in close 
agreement with the inviscid results. The amplitudes of fluctuating parts of meridional flow and of Nusselt 
number display distinctive peaks under resonance conditions. Details of evolutions of fluctuating velocities 
and temperatures are scrutinized to offer physical explanations for resonance. © 1998 Elsevier 

Science Ltd. 

1. INTRODUCTION 

Flow driven by a rotating disk has posed a long- 
standing fundamental problem. An elementary classi- 
cal model was conceived by von Karman, which dealt 
with an infinite disk rotating steadily in an infinite 
expanse of a homogeneous viscous fluid. Similarity 
solutions were obtained for the three-component axi- 
symmetric velocity field (see, e.g., Schlichting, 1968). 
Flows maintained by a steadily-rotating finite endwall 
disk lid in a closed circular cylinder, for large 
rotational Reynolds numbers, have been investigated 
extensively. These constitute crucial issues in both the 
basic fluid dynamics research and a multitude of tech- 
nological applications (e.g., Pao, 1971 ; Alonso, 1975 ; 
Bertela and Gori, 1982; Lang et al., 1994; Lim and 
Hyun, 1997). 

The majority of preceding studies were concerned 
with the cases when the rotation rate of the disk is 
constant. Time-dependent flows, which arise when the 
rotation rate of the disk is time-variant, have not 
received much attention in the literature. The practical 
relevance of a temporally-varying rotation of disk can 
easily be appreciated by noting that the output from 
the electric motor drive in the laboratory turntable is 
seldom steady and constant. A canonical flow model 
can be constructed when the rotation rate of the disk 
is oscillatory in time. Early theoretical studies of flow 
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induced by torsional oscillations of a disk were 
reported by Rosenblat (1959) and Benney (1964). 
These investigations assumed a small-amplitude tor- 
sional oscillation of an infinite plane disk in an 
unbounded constant-density fluid. By means of a lin- 
earized analysis, these works provided qualitative 
descriptions of the primary flow and identified a 
second-order meridional flow. In particular, the struc- 
ture of steady and fluctuating parts of meridional flow 
was depicted. Lim and Hyun (1997) acquired numeri- 
cal solutions to the full Navier-Stokes equations for 
an oscillating disk in a closed cylinder. The azimuthal 
and meridional flows when the amplitude of oscil- 
lation is finite were examined, and the qualitative pat- 
terns of meridional steady streaming were verified by 
laboratory flow visualizations. These reports supplied 
baseline information on the axisymmetric flows at 
large rotational Reynolds numbers when the disk 
undergoes torsional oscillations. 

Analysis of heat (and/or mass) transfer from a rot- 
ating disk, in conjunction with the induced flow field, 
has been performed in several rudimentary con- 
figurations (Sparrow and Gregg, 1960; Kreith et al., 
1963; Lehmkuhl and Hudson, 1971). These earlier 
accounts were concerned with the changes in transport 
properties in the fluid due to the presence of one or 
more steadily-rotating disks. Experimental measure- 
ments of mass transfer from the steadily-rotating disks 
were obtained, and heat transfer coefficients were esti- 
mated by resorting to the analogy between heat and 
mass transfers. 

The present paper explores the flow and heat trans- 
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fer properties from a torsionally-oscillating disk in a 
vertically-mounted cylinder. Specifically, the oscil- 
lating disk, which constitutes the top endwall, is held 
at a higher temperature than the stationary bottom 
endwall disk of the cylinder. In essence, the intro- 
duction of a vertical temperature contrast AT gives 
rise to a stable stratification, and the strength of strati- 
fication is characterized by the system Brunt-Vaisala 
frequency N. The case of a homogeneous constant- 
density fluid corresponds to N = 0 (or AT = 0). 

It is proposed here to portray the structures of vel- 
ocity and temperature fields in the cylinder, both 
instantaneous and time-averaged. One overriding 
concern is to describe the augmentations in heat trans- 
fer induced by the oscillation of the top endwall disk. 
Obviously, in the absence of this endwatl motion, no 
fluid flows are generated and the heat transfer will be 
purely conductive; and the Nusselt number at the 
endwall disk would be unity. The enhancement of heat 
transfer, owing to the convective activities in the fluid 
caused by the top endwall disk, is of primary interest. 
The present effort to probe into the heat transfer 
characteristics brings forth a more fundamental ques- 
tion on the existence of resonance in the stratified 
fluid system. Clearly, there are two major frequencies 
involved in the problem formulation ; i.e., the Brunt- 
Vaisala frequency, which inherently represents the 
buoyancy effect in the system, and the frequency of 
oscillation of the disk, which reflects the externally- 
controllable system excitation frequency. A rudi- 
mentary reasoning points to the possibility of res- 
onance if these two frequencies are related to each 
other. In a similar, but somewhat different context, 
the presence of resonance has been identified in the 
examples of mixed convection (Iwatsu et aL, 1992) 
and of natural convection with temporally-varying 
thermal boundary conditions (Lage and Bejan, 1993 ; 
Kwak and Hyun, 1996). The key contention is that, 
when the system natural frequency is related to the 
external forcing frequency, intensification of the 
amplitudes of time-dependent flow variables is re- 
alized. This phenomenon was termed resonance in the 
present context. Scaling arguments were put forth by 
Lage and Bejan (1993) to estimate the resonance fre- 
quency for the case of a confined natural convection 
in a square cavity with temporally-oscillating heat 
fluxes at the sidewall. Numerical results were exam- 
ined by Kwak and Hyun (1996) to derive the res- 
onance frequency for a confined natural convection 
in a cavity with an oscillating sidewall temperature. 
The present endeavour aims to shed further light on 
the resonance in the case of a mixed convection in a 
cylinder in which forced convection is provided by the 
torsional oscillation of the top endwall disk. 

Comprehensive numerical solutions to the gov- 
erning time-dependent Navier-Stokes equations are 
produced. The wealth of numerical results allows a 
systematic evaluation of flow intensification and 
attendant heat transfer augmentations as the ampli- 
tude and frequency of the disk oscillation encompass 

broad ranges. The effects of the overall system 
rotational Reynolds number and of the strength of 
imposed vertical temperature difference AT are delin- 
eated. Emphasis will be placed on gaining an 
improved physical understanding of the nature of res- 
onance pertinent to the present mixed convection 
problem formulation. 

2. THE MODEL 

Consider a vertically-mounted closed circular cyl- 
indrical container (radius R and height H; aspect ratio 
A r  = H / R ) ,  which is completely filled with an incom- 
pressible fluid of viscosity coefficient #, specific heat 
Cp, and thermal conductivity k. The Boussinesq-fluid 
approximation is invoked, i.e., p = pB(1 - c t ( T -  T~)), 
where PB and TB refer to the reference density and 
temperature at the bottom endwall disk (z = 0), 
respectively, and ~ the coefficient of thermometric vol- 
ume expansion. These physical properties of the fluid 
are taken to be constant. The top endwall disk (z = H) 
executes a torsional oscillation with angular velocity 

= ~2 cos(2t), and the rest of the solid walls of the 
cylinder are stationary. In the above expression, the 
frequency of torsional oscillation is 2 and the dimen- 
sionless amplitude of the angular velocity is explicitly 
denoted by c.. Here, 2 and ~ should be treated as 
independent parameters, rather than forming a single 
parameter (~2) (see Rosenblat, 1959; Benney, 1964). 
The temperatures of the top disk (z = H) and bottom 
disk (z = 0) are, respectively, TT and TB, and, to insure 
a gravitationally stable temperature contrast, 
A T ( = T T - - T B ) > O .  The cylindrical sidewall is 
assumed to be thermally insulated (see Fig. 1). 

It is advantageous here to implement non- 
dimensionalizations in the following fashion : 

(r', z ' )  = (r, z ) / g  ; t' = 2t  ; (u' ,  v', w')  = (u, v, w ) / ( 2 R )  ; 

T -  TB P " 0 
P'  pB22 R 2 ' A T  ' 

~=2~ecos(~,t) 

z - - ~  TT 

Z 

Z=G 
r: 

OT/3r=-0 

--0 r TB r = R  
Fig. 1. Flow configuration. 
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N =  ; S t x =  ; St  e2 e 

2R 2 ~2R 2 /t/p B 
Rex #/PB'  Re  P/PB eRex ;  Pr = k / ( p B c p )  

Note that the Rayleigh number Ra and the mixed- 
convection parameter R a / R e  2 can be derived as 

R a  ~- 
9ct A TR 3 Ra 

- St  2 • Pr. 
(lt/pB)(tc/pBCp) ' Re 2 

In the above, prime denotes the dimensionless quan- 
tities, and g the gravity• The principal nondimensional 
parameters are Stx, the stratification number; Re, the 
rotational Reynolds number; and Pr, the Prandtl 
number: and e denotes the dimensionless amplitude 
of torsional oscillation of the top endwall disk. Fur- 
thermore, it can be rewritten that St~ = Ra / (Re  2 Pr). 
Note that Stx represents basically the ratio between 
the Brunt-Vaisala frequency pertinent to the system 
N and the forcing frequency of disk oscillation 2, and 
it is modified by the aspect ratio. 

The fluid motion is governed by the time-dependent 
axisymmetric Navier-Stokes equations, which, writ- 
ten in cylindrical polar coordinates (r, ~0, z) with cor- 
responding velocity components (u,v,w), read, in 
nondimensional form (primes are dropped from the 
dimensionless quantities) : 

(3u 1 ~ ~z v2 (3P 
(3t - t-" ~,r (ruu) -- (uw) + r (3r 

1 r(3 1 (3 (32~] 
+ R Z [ ~ r r ~ r ( r U ) +  8z~] (2) 

(3v 1 c ~ f z  vu 
(3t - r ~ ( r u v ) -  (vw) r 

1 [(31(3 (32 ] 
+ ~ ~ r ~r (rv) + (3?'3 (3) 

I [1 (3 (32w-I 20 

(30 1 ~ 
(3t - ; ~r(ruO)-  (wO) 

l ( 1 ( 3 (  (30\ (320) 
+ ~ r r ( r ~ r ~ r - ~ r ) +  ~z2]  (5) 

~r t3w lr ( r u ) + ~  = O. (6) 

Note that the present formulation pertains to three- 
component, axisymmetric velocity fields (see, e.g., 
Rosenblat, 1959; Benney, 1964; Schlichting, 1968). 

Computations commence from an initially motionless 
state with a vertically-linear temperature profile, i.e., 
0 = z /Ar ,  which pertains to the conductive heat trans- 
fer mode. At time zero, the prescribed torsional oscil- 
lation is imposed on the top endwall disk. The main 
thrust of the problem lies in the large-time, quasi- 
steady periodic behaviour, and the initial transitory 
approach is not of much interest. In accordance with 
the problem statement, the boundary conditions are 

O0 
u = v = w = 0 ,  ~ r r = 0  at r = l  (7) 

u = v = w = 0 ,  0 = 0  at z = 0  (8) 

u = w = 0 ,  v = e r c o s t ,  0 = 1  a t z = A r .  (9) 

To satisfy numerical stability requirements, the 
boundary conditions at the central axis are applied at 
a small, but finite, radius (r = r~) (see Warn-Varnas et 
al., 1978 ; Hyun et al., 1982, 1983) : 

O(v/r) (3w (30 
u = 0 ,  ?Jr - 0 ,  ~ r = 0 ,  ~ r r = 0  at r = r i .  

(10) 

The above system of equations is solved by utilizing 
a well-established finite-difference numerical meth- 
odology. The numerical procedure adopted is essen- 
tially a mark-and-cell type, and it has been validated 
in a large number of simulations of rotating and strati- 
fied flows (e.g., Warn-Varnas et al., 1978 ; Hyun et al., 
1982, 1983 ; Lim and Hyun, 1997). The specifics of the 
numerical schemes and algorithms have been amply 
documented, and they are not reproduced here. The 
time step At was taken to be sufficiently small to insure 
both numerical stability and resolution of the results. 
For  most computations, after extensive test runs, the 
mesh network selected was typically (50 × 60) in the 
(r-z)  meridional plane, and At was chosen such that 
one oscillating cycle consisted of 4096 ( = 2  ~2) time 
steps. It was set r~ = 0.001, and changes in r~ in the 
range 0.001 ~< ri~< 0.005 produced no noticeable 
alterations in the global flow patterns. Comprehensive 
convergence tests with respect to grid spacing and 
time interval were carried out, and the outcome was 
satisfactory (see the quantitative verifications in Lim 
and Hyun, 1997). 

In order to deal with the upper corner region, two 
sets of grid-arrangement were extensively tested : (1) 
when the upper corner is part of the rotating disk and 
(2) when the upper corner belongs to the stationary 
sidewall. The global ftow patterns obtained displayed 
virtually no differences between the above two cases 
when the present stretched grid network was 
deployed. 

3. RESULTS AND DISCUSSION 

In most runs, about five to ten oscillation cycles 
were needed to settle down to the quasi-steady state. 
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Also, it was set Ar  = 1.0 and Pr = 1.0, and interest 
was focused on the explicit effects of the disk oscil- 
lations, which are characterized by e and Rea, and of 
the influence of imposed vertical stratification, which 
is represented by Sty. Also, for the present problem 
formulation, St 2 = R a / R e  2. 

It is useful to define the cycle-averaged value, 
denoted by subscript s, and the time-fluctuating com- 
ponent,  shown by subscript f, i.e., 

4~(t) = ~, + tkf(t) 

where 4~ = ~+2, ~b dt, in which q5 stands for an instan- 
taneous physical variable. Also, A(dpf) represents the 
amplitude of the fluctuating component  ~br. 

First, the effect of  the buoyancy is scrutinized. Fig- 
ure 2 illustrates the global patterns of the steady mer- 
idional streaming (u,  wJ. In the plots, the meridional 
stream function ¢~, which is defined such that 
u~ = (1/r)(O~k/Sz), w~ = -(1/r)(O@/c3r), is shown. The 
parameters are e = 2.0, Re  = 1000. As is apparent in 
Fig. 2, the oscillation of the top disk generates steady 
axial motions toward the top disk at small and mod- 
erate radii. In the vicinity of the oscillating disk, the 
fluid is propelled radially outward. At large radii near 
the cylindrical sidewall, constrained by the finite 
geometry, the meridional flow turns away from the 
oscillating disk and points downward along the ver- 
tical sidewall. This completes the overall circulatory 

Z 

Z - - - - ~  Z--- 

(a) 

r 
z=O I I ~ z=O ~ I r 

r=-O r=l r=O r=l 

(b) 

(c) 

Fig. 2. Left column shows the stream function ~s, for steady 
meridional flows (us, w~), scaled by Re[ lj2. Right column 
shows 0d, the deviation of steady temperature (0s) from the 
original linear profile, i.e., 04 -~ O~-z/Ar. e = 2.0, Re = 1000. 
(a) St = e 1. Wm,x = 5.702x 10 -3, ~min = -0.187x 10 3, 
A 0 = 2 . 9 4 x 1 0  -4 , 0m,x=3.285X10 -1 , 0mi,=--l.334X 
10 -~, A0 = 2.31 x 10-2; (b) St = 1.3. Wmax = 2.033 X 10 ~, 
W~i.= --0.443X10 -3 , A~P= 1.24x10-4; 0~,~=0,665X 
10 -1, 0~i, = --0.211 X 10-I, A0 = 0.438 x 10-2; (c) St = 5.0. 
Wr.,~ = 0.724 x 10 -3, ~Pmi. = --0.211 X 10 ~, A~P = 0,468 X 
10-4; 0m~=0.137X10 -l, 0mi.=--0.0811xl0 -1, A0= 

0.109 x 10 -2. 

path, and this general behaviour was corroborated by 
flow visualizations for a homogeneous fluid (Lira and 
Hyun, 1997). The impact of buoyancy reduces, in 
general, the magnitudes of the meridional velocities, 
as shown in Fig. 2 (note the difference in scales for 
the values of ~ of Fig. 2). The introduction of stable 
stratification suppresses vertical motions, therefore, 
as St increases, the region of appreciable meridional 
flows tends to be confined to the area closer to the 
oscillating disk. As seen in Fig. 2(c), when St is large, 
the meridional flows in the bulk of the interior, with 
the exception of a small zone adjacent to the disk, are 
practically nil. 

The plots of the deviation of the time-averaged tem- 
perature 0~ from the initial-state vertically-linear pro- 
file z /Ar  are also illustrated in Fig. 2, i.e., 
Od = O~-z /Ar .  It is discernible that as stratification 
increases, the size of the area in which 0d is appreciable 
shrinks, and this zone tends to be concentrated toward 
the oscillating top disk. Also, the magnitude of 0~ is 
reduced substantially as St  increases. Under  complete 
dominance of conduction, 0d vanishes. Therefore, as 
seen in Fig. 2, the presence of non-vanishing 0d points 
to convective activities. As the overall imposed strati- 
fication increases (see Fig. 2(c)), heat transport  in 
much of the interior region, except in a narrow zone 
close to the top disk, is accomplished by conduction. 
As displayed earlier, the fluid is pumped from below 
toward the oscillating disk at small and moderate 
radii. Therefore, the fluid in the upper part of the 
cylinder is replaced by the colder fluid originating 
from the lower part of  the cylinder. In the upper region 
of the cylinder of large radii near the vertical sidewall, 
the warm fluid near the top disk is propelled radially 
outward and it descends. These spatially-varying fea- 
tures of temperature fields are more conspicuous as 
St increases, and only in the upper part of the cylinder 
the averaged temperature field deviates from the initial 
linear temperature distribution. In the middle and bot- 
tom portions of the cylinder, the fluid temperature 
remains virtually unchanged from the conduction- 
controlled vertically linear profile. In the upper region 
of the cylinder, convection is dominant.  Due to the 
disk oscillation, the fluid at small and moderate radii 
is colder than the initial state, and the fluid at large 
radii is warmer than the initial state. It is important  
to note that the oscillation of the upper disk brings 
forth radial temperature gradients in the regions of 
intense convective activities. 

In the computat ion of N, the original linear tem- 
perature profile is used. In the presence of disk oscil- 
lation, the strictly-linear temperature profile cannot  
be maintained. However, as shown in Fig. 2, the devi- 
ations of temperature profile from the original linear 
profile are very small (note the order of magnitude of 
0a in Fig. 2). It then follows that, in the evaluation of 
stability, the use of the linear profile in N is justified. 

As to the azimuthal flows, much of the descriptive 
statement of Lira and Hyun (1997) for the case of a 
homogeneous fluid is qualitatively applicable to the 
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present problem. The azimuthal velocity field is 
restricted to a region adjacent to the oscillating disk, 
and the (dimensional) vertical extent of this region is 
scaled by the thickness of the Stokes layer, O(v/)O 1/2, 
where v stands for the kinematic viscosity. Except 
in this zone, the azimuthal velocities in much of the 
cylinder interior are practically zero. This general 
property of the v-field remains largely unaltered as St 
increases in the range of the present computations. 

One central issue in the discussion of temporally- 
periodic rotating flows of a stratified fluid is the pres- 
ence of inertia-gravity wave oscillations. As the classi- 
cal treatise (e.g., Greenspan, 1968) demonstrated, the 
restoring forces due to the rotational effect and the 
gravity give rise to internal oscillations. In the present 
context, the fluid system is excited by the externally- 
controllable mechanical oscillation of the upper disk. 
Therefore, a fundamental consideration leads to the 
possibility of resonance if the frequency of the disk 
oscillation and the frequency of the intrinsic internal 
gravity-inertial oscillation are related. Under res- 
onance conditions, the fluid motions are intensified 
and the resultant convective heat transfer is enhanced. 
The notion of resonance in natural convection in a 
non-rotating confined space, with periodic thermal 
forcings, has been dealt with recently (e.g., Lage and 
Bejan, 1993; Antohe and Lage, 1994, 1996, 1997; 
Kwak and Hyun, 1996). In the case of rotating flows 
of a homogeneous fluid, resonance phenomenon in 
connection with the inertial oscillations has been 
addressed (e.g., Aldredge, 1976). Iwatsu et al. (1993) 
identified the resonance conditions by monitoring the 
augmentation in a square cavity with an oscillating flat 
lid under an imposed vertical temperature differential. 

Consider axisymmetric flows in a cylindrical con- 
tainer, filled with an inviscid, incompressible fluid with 
a vertically-linear stratification. By assuming a wave- 
like solution, the eigenfrequency o-m, of this fluid sys- 
tem can be found, by undergoing an elementary analy- 
sis (see, e.g., Greenspan, 1968): 

with the corresponding eigenfunction in the form of 
(in dimensional notation) 

J0 m sin n• , 

where J0 denotes the zeroth-order Bessel function. In 
the above, m and n are the integer indices denoting 
the (m, n)th mode in the (radial and axial) directions, 
N the previously-defined Brunt-Vaisala frequency, ~m 
the mth positive root of the first-order Bessel function. 
Clearly, 0-,,, indicates the frequency of modes of iner- 
tial-gravity oscillations which are inherent to the ro- 
tating and stratified fluid system under present con- 
sideration. 

As remarked earlier, a key argument is the presence 

of resonance when the above-cited eigenmodes of the 
system are excited and amplified if the externally- 
applied excitation frequency 2 matches the correct 
natural frequency. The impetus of the present study is 
to establish the resonance phenomenon and to portray 
the intensification of flow and augmentation of con- 
vective heat transport. 

It is useful to define the radially-averaged instan- 
taneous Nusselt number at height z : 

] 8 0  

This can further be divided into the cycle-averaged 
value Nus and the time-fluctuating component 
Nul-( t, z), i.e., 

Nus = Nu(t, z) dt, 
t +  2 ~  

Nuf(t ,z)  = N u ( t , z ) - N u s .  

Detection of resonance can be made by inspecting 
the characteristics of the fluctuating parts of flow vari- 
ables. Figure 3 exhibits the behaviour of A(~0 at 
selected locations vs Sty. Obviously, the meridional 
flows are vigorous in the interior region of the cylinder 
(note the difference in scales for A(O0 in Figs 3(a)- 
(c)). Clearly, the dominant mode of inertial-gravity 
oscillations is the (1, 1) mode. This mode corresponds 
to a disturbance whose radial extent fills the entire 
cylinder radius (m = 1), and a half-wave of this mode 
fits the whole cylinder height (n = 1). The afore-stated 
inviscid analysis yields 0-jj ~ 0.773N, the second mode 
0-~2 ~ 0.521N, and the third mode 0-~3 ~ 0.377N, etc. 
Also, since the rotation rate of the top disk, f~(t), is 
sinusoidal with frequency 2, the pertinent frequency 
for the absolute magnitude of the rotation rate, ]f~(t)[, 
is 22. Notice that the temporal behaviour of mer- 
idional flows is in response to If~(t)]. Therefore, the 
base-mode resonance is expected when 22re = a~, 
which points to Str~ = Ar]/2(N/2ro) = 2.59. In Fig. 3, it 
is evident that the primary peak in A(~dr) is seen at 
St~ ~- 2.6, which is in close agreement with the above 
reasoning based on inviscid analysis. The secondary 
and tertiary peaks in A(qJO in Fig. 3 are found 
St~ _~ 3.8 and St~ ~- 5.3, respectively. These cor- 
respond to the second and third modes of excitation, 
i.e., when 22 = 0-~2 and 22 = o-13 , respectively. The 
overall results in Fig. 3 are supportive of the concept 
of flow intensification under resonance conditions, 
and the numerical values derivable from the inviscid 
theory are shown to be reasonably accurate in assess- 
ing the resonance frequencies. 

Figure 4 demonstrates the variations of the kinetic 
energy (KE) of meridional flows. Here, KE is defined 
a s  

 rfol KE = (uZ + w2)r dr dz. 
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Fig. 3. Amplitude of the fluctuating part of meridional 
streaming, A(Ulf), vs Sty. e = 2.0, Re = 1000. The radial 
location is r=0 .5 ,  and vertical locations are: (a) 

z/Ar = 0.98 ; (b) z/Ar = 0.5 ; (c) z/Ar = 0.02. 

Obviously, the kinetic energy generally decreases with 
Sty; as ascertained in Fig. 2, the overall meridional 
flows are attenuated as the system stratification is 
increased. In Fig. 4, the curves of kinetic energies 
display local peaks under resonance conditions, which 
is in line with the assertions of Fig. 3, i.e., Sty. _~ 2.6, 
3.8, and 5.3 for local peaks. It is noted that the ordi- 

r ~  

10 .4 

10 "s 
0 .1  

10 .3 

, , h , , ~ , , i  , , , , , , , , i  

1.0  10.0  
St~ 

(a) 

10 .4 

10-s 
0.1  

J h , ~ , , h i  , , L , , ,  , L ~  

1.0  10.0  
St  x 

Fig. 4. Kinetic energies of meridional flow vs Sty. (a) steady 
part; (b) fluctuating part. ~ = 2.0, Re = 1000. 

nates in Figs 3 and 4 are in logarithmic scales. These 
establish that the physical variables peak when the 
resonance conditions are met. For  large values of Re 
and Ra, the inertial-gravity oscillations based on the 
inviscid consideration provide valid estimates of the 
eigenmodes of the system. 

The enhancement of heat transport  is illustrated in 
Figs 5 and 6. In Fig. 5, the explicit variation of  A(NuO 
with St~ is plotted. In the parameter values covered, 
the base-mode resonance condition, i.e., St~ ~- 2.6, is 
largely unaffected as the amplitude of the disk oscil- 
lation ~ varies. In the middle port ion of the cylinder, 
the augmentat ion of the fluctuating part of heat trans- 
fer, A (NuO, is most pronounced. The numerical results 
are reorganized in Fig. 6 to delineate the effect of St. 
The resonance points on the St~-axis remain virtually 
unchanged as the overall stratification increases, 
which is consistent with the foregoing physical argu- 
ments. 

It is emphasized that the amplifications shown in 
Figs 5 and 6 refer to the amplitude of the fluctuating 
part of Nu. The changes in the time-averaged heat 
transport, expressed by Nus, are very small for the 
parameter ranges of present concern (Bejan and Lage, 
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[], z/Ar = 0.5; A, z/Ar = 0.02. Re = 1000. Note that 
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1993 ; Antohe and Lage, 1994, 1996, 1997 ; Kwak and 
Hyun, 1996). 

The general effect o f  Pr on resonance was discussed 
in detail in Antohe and Lage (1997) and Kwak and 
Hyun (1996). The overall resonance phenomenon is 
found to be most distinctive for Pr ~ O(1), and the 
present study reports on the results for Pr = 1.0. The 
global qualitative observations are similar for other 
Pr values. 

The details of  the temporal variation of the Nu- 
profile are elaborated in Fig. 7. The intensification of 
Nu-profiles under  resonance in the middle and bottom 
regions of the cylinder is in evidence (see Fig. 7(b)). 

In plots displaying the instantaneous flow variables, 

the fluctuating parts are masked by the dominant  
steady features. However, in an effort to gain physical 
insight into the mechanism of  resonance, it is useful 
to examine the details of the time-fluctuating com- 
ponents of flow. The ensuing discussions run closely 
to the physical pictures advanced by Kwak and Hyun 
(1996) for natural  convection in a cavity with time- 
oscillating thermal boundary conditions. 

The disk rotation can now be divided into four 
phases, as shown in Fig. 8. Phases I and III (II and IV) 
represent deceleration (acceleration) in the absolute 
magnitude of the rotation rate. It is important  to note 
that the fluctuating part of  meridional flow, relative 
to the steady motion, diminishes (intensifies) in phase 
i and III (II and IV). Here, it is stressed that the 
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crucial part in the discussion is the temporal behavior 
of qJr relative to the steady streaming. 

Sequential plots of qJf and Of ( = O - z / A r - O s )  the 
fluctuating part of  temperature deviation, for the res- 
onance case (Stre -~ 2.6) are illustrated in Fig. 9. Note 
that the temperature field 0r displayed here represents 
the deviations relative to the original, conduction- 
dominant  vertically-linear profile. It should be remem- 
bered that the full instantaneous flow field consists of 
these fluctuating parts and the more prominent  steady 
flows portrayed in Fig. 2. 

First, the flow evolution is scrutinized. At time z~, 
the full domain is occupied by a clockwise (CW) cir- 
culation cell, which was developed by the disk accel- 
eration in the previous oscillation cycle. At time %, a 
weak counterclockwise (CCW) circulation forms near 
the stationary bot tom disk. As the rotation rate of the 
disk approaches zero (see frames c, d, e), the CCW 
grows from the bottom and fills most of the cylinder. 
In phases II, a reverse process takes place. In 
summary, in a half cycle, the CW and CCW cir- 
culating cells are developed and they disappear sub- 
sequently. 

In an endeavour to identify heat transport  under 
resonance conditions, the movements of the cold 

spots, relative to the steady temperature field, are 
traced. In Fig. 9(a), a cold spot, characterized by 
negative values of Of, is visible in the bottom region of 
the cylinder. This represents the vertical intrusion of 
cold disturbances ( f rom the bottom cold disk) which 
were developed in the acceleration phase (z = ~,) of 
the previous cycle. These disturbances were trans- 
ported by the general upwelling motions of the steady 
streaming. As is discernible in Figs 9(b) and (c), this 
cold disturbances travels upward in much of the 
interior region. Only in a zone close to the cylindrical 
sidewall, hot disturbances are seen. These represent 
the downwelling near the sidewall, carrying hot fluids 
which were in contact with the top hot disk. Around 
T = zd and z = %, the cold disturbances are broken 
into two parts. One forms the cold zone in the upper 
region, adjacent to the top disk; another is found in 
the sidewall area of the bottom region of the cylinder. 
The upper cold disturbance weakens and subsequently 
dies out. The bot tom cold zone moves toward the axis 
and later moves upward as described earlier. 

The above pictures provide a clue for the resonant 
convection. While the cold disturbance is in contact 
with the top hot disk, heat transfer takes place. This 
heated fluid travels downward at large radii due to the 
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(h)),t = 77z/8, (i) 2t - n. 

steady streaming, and when this hot fluid gets into 
contact with the bottom cold disk, heat is transferred 
from the fluid to the bottom disk. Therefore, the key 
assertion is that, in order to achieve maximum heat 
transfer, the two events, i.e., (1) the generation and 
disappearance of cold and hot spots; and (2) the 
development and diminishing of the CW and CCW 
circulations, are synchronized. When this is satisfied, 
resonance is materialized. The frequency of event (1) 
is characterized by the inertial-gravity oscillation, and 
event (2) is largely controlled by external excitation 
of frequency 2)`. As seen in Fig. 9, when 2)` and a,,, 
are approximately equalized, flow and heat transfer 
take place in a broader region of the cylinder and the 
intensities of these are increased. 

The qualitative pictures of temporal behaviour of 
udf and 0f under off-resonance conditions are exem- 
plified in Figs 10 and 11. In Fig. 10, St~. >Stre,  which 
can be interpreted as ), < )-re if N is unaltered. The 
external excitation is of  low frequency. The period 

of external forcing is longer than the period of the 
occurrence and disappearance of hot and cold spots. 
This mismatch of the two times leads to a lower effec- 
tive heat transfer rate. As seen, the patterns of fluc- 
tuating part of  flow produce vertically-stacked cir- 
culation cells, which undercuts vigorous convective 
activities. This feature was emphasized in Kwak and 
Hyun (1996). In Fig. 11, a qualitatively opposite case 
is demonstrated. For  a fixed N, ), > )'re, reflecting the 
fact that the external excitation is of  high frequency. 
The mismatch of the above-described two times is 
seen. The velocity patterns produce a horizontally- 
stacked structure, which lessens effective convective 
heat transport (see Kwak and Hyun, 1996). 

In the related studies on natural-convection res- 
onance in a cavity (Kwak and Hyun, 1996; Antohe 
and Lage, 1994), the time evolutions of the surface- 
averaged Nu values at the walls were plotted. Under  
resonance, the Nusselt numbers everywhere in the cav- 
ity show oscillations with varying amplitudes depend- 
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Fig. 11. Plots of meridional stream function q~f for the fluc- 
tuating meridional flow (uf, wf), and fluctuating temperature 
Of, under off-resonance condition, i.e., St~ = 2.2, Re = 1000, 
e = 2.5. Times for the frames are (a) 2t = 0, (b) 2t = zr/8, (c) 

2t = 7z/4, (d) 2t = 3n/8, (e) ;.t = rt/2. 

ing on the locations.  Quali tat ively similar pictures pre- 
vail in the present  study. The changes in the time- 
evolut ions with the forcing frequency were delineated 
explicitly in the preceding accounts  (see Fig. 4 of  
Kwak and  Hyun,  1996). 

4. CONCLUSION 

As the overall  strat if ication increases, the steady 
meridional  s t reaming is concent ra ted  to a na r row 
region to the top  disk. Inspect ion of  the f luctuat ing 
par ts  o fmer id iona l  velocity and  of  the Nussel t  n u m b e r  
leads to the identification of  resonance condit ions.  

The frequencies ~7mn of  the iner t ia l -gravi ty  oscil- 
lations, as ob ta ined  by inviscid analysis provide 
reasonably  accurate  descript ions of  the system eig- 
enfrequencies. Fo r  mer id ional  flows, when  exci tat ion 
frequency 22 is equal  to a,,,, resonance takes place. 
Substant ia l  enhancements  of  A(qJf) and  A(Nuf) are 
realized under  resonance condit ions,  and  this 

p h e n o m e n o n  is p ronounced  in the middle por t ion  of  
the cylinder. 

A scrutiny of  the flow evolut ions is support ive of  
the above  assert ion tha t  flow and  heat  t r anspor t  are 
augmented  when  the resonance condi t ion  is stratified. 
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